## Recent Charm Production and Neutrino Oscillation Results From CHORUS



Aysel Kayış Topaksu, University of Çukurova, Adana

PANICO5, Santa Fe, NM 24 - 28 October 2005

### Outline

- CERN Neutrino Beam Line
- CHORUS detector and Automatic emulsion data acquisition
- Results on charm analysis
   Measurement of total D<sup>0</sup> production
  - \* Anti-neutrino charm production
  - Measurement of fragmentation properties of charm
  - → Bµ: muonic branching ratio
  - → Measurement of D\*+ production
  - Search for Superfragment and Hyperfragment
  - Result on oscillation
  - Conclusion

## Neutrino beam

West Area Neutrino Facility at CERN SPS



#### Wide Band Beam

- 5.06  $\times$  10<sup>19</sup> POTs (1994-1997)
- $\langle Ev_{\mu} \rangle$  ~ 27 GeV
- <L>  $\sim$  0.6 km <L>/<E>  $\sim$  2  $\times$  10<sup>-2</sup> km/GeV  $\rightarrow$   $\Delta$ m<sup>2</sup> > 1 eV<sup>2</sup>
- Prompt extstyle exts



## CHORUS detector

#### Active target

nuclear emulsion target (770kg) Air-core magnet scintillating fiber tracker  $\Delta p/p = 0.035 p (GeV/c) \oplus 0.22$ Muon spectrometer  $\Delta p/p = 10 - 15\%$ (p < 70 GeV/c) <sup>V</sup>μ~ 27 GeV Calorimeter  $\Delta E/E = 32 \%/\sqrt{E}$  (hadrons) CERN SPS = 14 %/ $\sqrt{E}$  (electrons) Veto  $\Delta\theta$  <sub>h</sub>= 60 mrad @ 10 GeV

## Automatic emulsion data acquisition

- 1 Location of v interaction vertex guided by electronic detector.
- 2 Full data taking around v interaction vertex called Netscan

Volume :  $1.5 \times 1.5 \text{ mm}^2 \times 6.3 \text{ mm}$ 

Angular acceptance: 400 mrad

~ 11 minutes / event

Offline tracking and vertex



Track segments from 8 plates overlapped



Eliminate passing

Eliminate passing through tracks

Reconstruct full vertex topology



## Measurement of D<sup>0</sup> production

Phys. Lett. B 527 (2002) 173, based on ~25% of statistics

Phys. Lett. B 613 (2005) 105, based on full statistics

#### NOW: full sample: ~ 95000 CC events

#### Candidate selection

- Primary track matched to detector muon
- Daughter track matched to detector track
- •3 ~ 13 μm < I.P. wrt. 1ry vtx < 400 μm

#### Confirmed D<sup>0</sup>sample

- 2 prong (V2) 819
- 4 prong (V4) 226

#### Selection efficiencies

V2 : 0.561 ± 0.018

V4 : 0.754 ± 0.027



$$(D^0 \rightarrow V4) / (D^0 \rightarrow V2)$$
  
= 0.207 ± 0.016 ±0.004

## Fully neutral D<sup>0</sup> decay mode:

BR4/BR2 - measured

 $BR4 = 0.1338 \pm 0.0058$ 



PDG

 $BR(D^0 \rightarrow \text{neutrals}) = 1-BR4 \times (1+ BR2/BR4) = 21.8 \pm 4.9 \pm 3.6\%$  (6 prong negligible)

### Total production cross section:

Relative detection efficiency  $D^0/CC = 0.88$ 

$$\sigma(D^0)/\sigma(CC) = (2.69 \pm 0.18 \times 0.13)\%$$

## Charm production in antineutrino

#### interactions

$$N_{u^+} = 2704$$

"1µ spectrometer events"

$$N_{\mu^-} \sim 95000$$

Selected events for visual insp= 81 
$$\Theta_{kink}$$
> 50 mrad, F.L > 50  $\mu$ m



found charm = 40

$$N^{\overline{\nu}_{\mu}} = 4975 \pm 187 \pm 53$$
  $\frac{f_{C^0}}{f_{C^-}} = 2.6^{+1.7}_{-1.2} (stat) \pm 0.8 (syst)$ 

$$\frac{\sigma(\bar{v} N \to \mu^{+} \bar{c} X)}{\sigma(\bar{v} N \to \mu^{+} X)} = (5.0^{+1.4}_{-0.9} \pm 0.7) \%$$



#### Charm production rate as a function of neutrino energy



#### Measurement of fragmentation properties of charm

#### Measurement of D<sup>0</sup> momentum



**D** Momentum

Use correlation between opening angle of decay daughters and charm momentum to obtain momentum dist.



## **Z-distribution**

## Fits to Collins-Spiller and Peterson:



$$D_c(z) = N\left(\frac{1-z}{z} + \frac{\epsilon_c(2-z)}{1-z}\right)(1+z^2)\left(1 - \frac{1}{z} - \frac{\epsilon_c}{1-z}\right)^{-2}$$

$$D_p(z) = \frac{N}{z(1 - 1/z - \epsilon_p/(1 - z))^2}$$

#### CHORUS:

Fit to Peterson formula (dotted curve is MC model)

- Also an E531 measurement
- > Indirect measurements from dimuon data
  - CDHS, CCFR, CHARMII, NuTeV, CHORUS





Phys. Lett. B604 (2004) 145

#### Feynman $x(x_F)$ -distribution

Most charmed particles are produced in the forward region

 $x_F = p_L/p_{max}$ 

| Experiments | $\langle z \rangle$      | $\epsilon$                  | $\langle x_F \rangle$    | Asymmetry                |
|-------------|--------------------------|-----------------------------|--------------------------|--------------------------|
| E531[7]     | $0.59 \pm 0.04$          | $0.076 \pm 0.014$           |                          | $0.620 \pm 0.092$        |
| NOMAD[8]    | $0.67 \pm 0.02 \pm 0.02$ | $0.075 \pm 0.028 \pm 0.036$ | $0.47 \pm 0.05$          | _                        |
| CHORUS      | $0.58 \pm 0.06 \pm 0.03$ | $0.13 \pm 0.02 \pm 0.03$    | $0.37 \pm 0.04 \pm 0.01$ | $0.88 \pm 0.15 \pm 0.02$ |
| CDHS[2]     | $0.068 \pm 0.08$         | [0.02, 0.14]                | _                        | _                        |
| CCFR[4]     | $0.56 \pm 0.0.03$        | $0.22 \pm 0.05$             | _                        | _                        |
| CCFRR[5]    | _                        | $0.40^{+0.25}_{-0.11}$      | _                        | _                        |
| CHARM II[3] | $0.66 \pm 0.03$          | $0.072 \pm 0.017$           | _                        | _                        |
| BEBC[6]     | $0.59 \pm 0.03 \pm 0.08$ | _                           | _                        | _                        |

## $B_{\mu}$ : muonic branching ratio

Direct observation of the charm parent and its muon decay

Taking into account the new CHORUS measurement of Br ( $D^0 \rightarrow V0$ )

$$B_{\mu}$$
 = 7.3 ± 0.8 ± 0.2%

Dimuon events have larger visible energy E<sub>vie</sub> > 30 GeV

$$B_{\mu} = (8.5 \pm 0.9 \pm 0.6)\%$$

$$B_{\mu} |V_{cd}|^2_{LO} = (0.474 \pm 0.027) \times 10^{-2}$$
 CDHS, CHARM II & CCFR averaged

$$|V_{cd}|_{LO} = 0.239 \pm 0.046$$

0.221<  $/V_{cd}$  /< 0.227 at 90% CL using CKM unitarity and 3 generations

# The results takes into account the new CHORUS measurement of $B(D0 \rightarrow V0) \approx 22\%$

$$\frac{\sigma_{\mu^{-}\mu^{+}}}{\sigma} = [3.16 \pm 0.34(stat)0.09(syst)] \times 10^{-3}$$



## Measurement of D\*+ production

Phys. Lett. B614 (2005) 155

Search for D\*+ in the decay channel: D\*+  $\rightarrow$  D0  $\pi$ +



### Measurement of D\*+ production

$$Br(D^{*+} \to D^{\circ} \pi^{+}) = 0.677 \pm 0.005 \ (PDG)$$
  $\frac{O_{D^{*}}}{\sigma_{D^{\circ}}} = 0.38 \pm 0.09 \pm 0.05$ 

$$\frac{\sigma_{D^*}}{\sigma_{CC}} = [1.02 \pm 0.25 \pm 0.15]\% \quad \begin{array}{ll} \text{NOMAD} & 0.79 \pm 0.17 \pm 0.10 \\ \text{BEBC} & 1.22 \pm 0.25 \% \\ \text{Tevatron} & 5.6 \pm 1.8 \% \text{ (higher energy)} \end{array}$$

assuming that prompt  $D^{*+}$  and  $D^{*0}$  production rates are equal we get

$$\frac{\sigma(D^0 \text{ from D}^*)}{\sigma(D^0)} = 0.63 \pm 0.17$$

## Search for Superfragments and Hyperfragments

Hyperfragments are nuclei with a strange baryon (lambda-zero)

Superfragments have a charmed baryon (lambda-c-plus)

Could be made in neutrino interactions

Expect decay within few microns from vertex

Search for events with a secondary vertex close to the primary vertex

Secondary vertex should have outgoing black track(s) and the decaying object should be black

Distinguish hyper- from superfragments by kinematical analysis

Evidence for superfragments not convincing in litterature

look for "mesic decays", i.e. Pions in final state

#### Typical Candidate Event

A total of 28 non-mesic hyperfragments were found



#### Results

Hyperfragment production/CC

$$\frac{\sigma(\nu_{\mu} \text{A} \rightarrow \text{HF}(\text{non-mesic})\mu^{-}X)}{\sigma(\nu_{\mu} \text{A} \rightarrow \mu^{-}X)} = \text{(2.0\pm0.4(stat)\pm0.3(syst))} \times \text{10}^{-3}$$

Superfragment production limit /CC

$$\frac{\sigma(\nu_{\mu}A \to SF\mu^{-}X)}{\sigma(\nu_{\mu}A \to \mu^{-}X)}$$
 <1.9 × 10<sup>-4</sup> (90%C.L.)

Using the Lambda\_c production ratio ( $\sigma$  ( $\Lambda$ c) / $\sigma$ (CC)= (1.54  $\pm$  0.35(stat)  $\pm$  0.18 (syst))  $\times$  10<sup>-2</sup>)

$$\frac{\sigma(\nu_{\mu}A \to SF\mu^{-}X)}{\sigma(\nu_{\mu}A \to \Lambda_{c}^{+}\mu^{-}X)} \leftarrow 1.3 \times 10^{-2}$$
 (90%C.L.)

## Oscillation Analysis

Decay mode considered

i)-
$$\tau^- \rightarrow \mu^- \nu_\mu \nu_\tau$$
 ii)-  $\tau^- \rightarrow h^- (n\pi^0) \nu_\tau$ , iii)-  $\tau^- \rightarrow 3h^- (n\pi^0) \nu_\tau$ 

- √ Pre-selection (data from electronic detector)
  - -vertex predicted in the emulsion
  - -At least one negative track
    - $-1\mu$  sample
    - -Oµ sample
- ✓ Emulsion Scanning
  - -Scan back of selected tracks CS→SS→bulk→vertex plate
  - -Vertex reconstruction & decay Search, NETSCAN
  - -Event selection
  - -Eye-Scan Check, visible recoil, blob or Auger electron
- √ Final kinematical cuts
  - -decay length, kink angle, P, at vertex

## Backgrounds

## $1\mu$

- $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$  (C1) <u>-</u> Charm mesons in  $v_{\mu}(v_{\mu})$  and  $v_{e}$  CC interactions  $\nu_{\mu/e} N \rightarrow \mathbf{P}^- \mu^+/e^+ X$  $\mu^{-}/h^{-}$  + neutrals ~10<sup>-6</sup>/  $N_{\mu}$  = 0.11
  - Ομ
- $\tau^- \rightarrow h^-(nh^0) v_{\tau}(C1)$ ,
- $\tau^- \rightarrow h^+h^-h^-(nh^0)v_{\tau}(C3)$ 
  - Charm production similar to  $\mu$  channel
  - White interactions

## White kink background



- 1-prong nuclear interaction with no ionising activity at the interaction point (fake  $\tau$  decay topology)
- CHORUS measured :

$$\lambda_{WK}(P_T > 250 \text{ MeV/c}) = 24.0 \pm 8.5 \text{ m}$$



#### Post-scanning WK rejection for C3

 $\Phi_{+}$  cut and  $c\tau$  cut



# Limit computation

| DT infos                               | $\Delta \phi(rad)$ | Background        | $N_{\tau}^{max}$ | Data |  |
|----------------------------------------|--------------------|-------------------|------------------|------|--|
| $	au  ightarrow 1 \mu$                 | 0,100±0,025        | 5014              | 0                |      |  |
| $\tau \to 0\mu C1 [1994 - 1995 d]$     | $0.300 \pm 0.075$  | 526               | 0                |      |  |
| $\tau \to 0\mu C1 [1996 - 1997 d]$     | $51.5 \pm 9.7$     | 9447              | 59               |      |  |
|                                        | $[0;\pi/2]$        | $23.7 \pm 4.1$    | 1754             | 30   |  |
| No DT                                  | $[\pi/2; 3\pi/4]$  | $6.7 \pm 1.4$     | 1415             | 14   |  |
|                                        | $[3\pi/4;\pi]$     | $11.9 \pm 3.1$    | 2856             | 10   |  |
| $P_T < 250  MeV/c$                     | $[0;\pi]$          | $4.6 \pm 1.1$     | 664              | 1    |  |
|                                        | $[0;\pi/2]$        | $0.820 \pm 0.080$ | 701              | 0    |  |
| Charge -, $P_T > 250 MeV/c$            | $[\pi/2; 3\pi/4]$  | $0.190 \pm 0.020$ | 714              | 0    |  |
|                                        | $[3\pi/4;\pi]$     | $0.090 \pm 0.045$ | 1230             | 0    |  |
|                                        | $[0;\pi/2]$        | $1.48 \pm 0.30$   | 13               | 3    |  |
| Charge +, $P_T > 250 MeV/c$            | $[\pi/2; 3\pi/4]$  | $0.58 \pm 0.12$   | 25               | 0    |  |
|                                        | $[3\pi/4;\pi]$     | $1.47 \pm 0.40$   | 75               | 1    |  |
| $\tau \to 0 \mu  C3  [1996 - 1997  d]$ | $51 \pm 12$        | 4974              | 48               |      |  |
|                                        | $[0;\pi/2]$        | 9.5±2.3           | 887              | 17   |  |
| Low $c\tau$ ( $< 75\mu m$ )            | $[\pi/2; 3\pi/4]$  | $4.2 \pm 1.0$     | 875              | 6    |  |
|                                        | $[3\pi/4;\pi]$     | $5.6 \pm 1.3$     | 1740             | 4    |  |
|                                        | $[0;\pi/2]$        | $16.7 \pm 4.0$    | 432              | 8    |  |
| High $c\tau$ (> 75 $\mu m$ )           | $[\pi/2; 3\pi/4]$  | $6.7 \pm 1.6$     | 376              | 8    |  |
|                                        | $[3\pi/4;\pi]$     | 7.9 ± 1.9         | 664              | 5    |  |

# Limit computation

 $N_{ au}^{max}$  = number of detectable  $v_{ au}$  events if the oscillation probability is = 1

$$N_{\tau}^{max} = N_{loc}^{0\mu} \times \frac{\sigma_{\tau}^{CC}}{\sigma_{\mu}^{NC} \cdot \varepsilon_{loc}^{NC} \cdot \sigma_{\mu}^{CC} \cdot \varepsilon_{loc}^{CC} \cdot \sigma_{\mu}^{CC}} \cdot \sum_{i=1}^{4} BR(\tau \to i) \cdot \varepsilon_{0\mu}^{\tau \to i}$$

|                       | bg          | data | N <sub>τ</sub> max | •          |
|-----------------------|-------------|------|--------------------|------------|
| <b>0</b> μ <b>C1</b>  | 51.5±9.7    | 59   | 9,447              | } p        |
| <b>0</b> μ <b>C</b> 3 | 51±12       | 48   | 4,974              | Ì.         |
| 1μC1                  | 0.100±0.025 | 0    | 5,014              | <b>]</b> , |
| 0μC1                  | 0.300±0.075 | 0    | 5,26               | } f        |

Phase II

Phase I

Feldman and Cousins unified approach G.J. Feldman and R.D. Cousins Phys. Rev. D57 (1998) 3873

### Status of oscillation into $v_{\tau}$

This analysis excludes a region of the  $\nu_{\mu} \rightarrow \nu_{\tau}$  oscillation with  $\sin^2 2\theta > 3.4 \times 10^{-4}$  (at 90% CL) at high  $\Delta m^2$ .



```
P _{\nu\mu \to \nu\tau} < 1.72×10<sup>-4</sup> @ 90% CL 
S _{\nu\mu \to \nu\tau} : 2.5×10<sup>-4</sup> @ 90% CL 
P(\leqL)= 28%
```

## Conclusion

#### CHORUS still working on charm analysis.

- Measurement of associated charm production in neutral- and charged-current neutrino int.
- Measurement of the x-distributions of charmed particle production in neutrino interactions
- Measurement of Lambda\_c production and decay into Sigma+ in neutrino interactions
- ·Measurement of diffractive production of D\_s in neutrino interactions
- ·..... Are still in progress